Degradation pathway of CopA, the antisense RNA that controls replication of plasmid R1.

نویسندگان

  • F Söderbom
  • E G Wagner
چکیده

RNA decay in bacteria is carried out by a number of enzymes that participate in the coordinated degradation of their substrates. Endo- and exonucleolytic cleavages as well as polyadenylation are generally involved in determining the half-life of RNAs. Small, untranslated antisense RNAs are suitable model systems to study decay. A study of the pathway of degradation of CopA, the copy number regulator RNA of plasmid R1, is reported here. Strains carrying mutations in the genes encoding RNase E, polynucleotide phosphorylase (PNPase), RNase II and poly(A) polymerase I (PcnB/PAP I)--alone or in combination--were used to investigate degradation patterns and relative half-lives of CopA. The results obtained suggest that RNase E initiates CopA decay. Both PNPase and RNase II can degrade the major 3'-cleavage product generated by RNase E. This exonucleolytic degradation is aided by PcnB, which may imply a requirement for A-tailing. RNase II can partially protect CopA's 3'-end from PNPase-dependent degradation. Other RNases are probably involved in decay, since in rnb/pnp double mutants, decay still occurs, albeit at a reduced rate. Experiments using purified RNase E identified cleavage sites in CopA in the vicinity of, but not identical to, those mapped in vivo, suggesting that the cleavage site specificity of this RNase is modulated by additional proteins in the cell. A model of CopA decay is presented and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bulged-out nucleotides protect an antisense RNA from RNase III cleavage.

Bulged-out nucleotides or internal loops are present in the stem-loop structures of several antisense RNAs. We have used the antisense/target RNA system (CopA/CopT) that controls the copy number of plasmid R1 to examine the possible biological function of bulged-out nucleotides. Two regions within the major stem-loop of the antisense RNA, CopA, carry bulged-out nucleotides. Base pairing in eith...

متن کامل

Effects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli

Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...

متن کامل

ANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO

The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...

متن کامل

Bulged-out nucleotides in an antisense RNA are required for rapid target RNA binding in vitro and inhibition in vivo.

Naturally occurring antisense RNAs in prokaryotes are generally short, highly structured and untranslated. Stem-loops are always present, and loop regions serve as primary recognition structures in most cases. Single-stranded tails or internal unstructured regions are required for initiation of stable pairing between antisense and target RNA. Most antisense RNAs contain bulged-out nucleotides o...

متن کامل

Antisense-RNA mediated transcriptional attenuation: importance of a U-turn loop structure in the target RNA of plasmid pIP501 for efficient inhibition by the antisense RNA.

Antisense-RNA mediated gene regulation has been found and studied in detail mainly in prokaryotic accessory DNA elements. In spite of different regulatory mechanisms, in all cases a rapid interaction between antisense and target RNA has been shown to be crucial for efficient regulation. Recently, a sequence comparison revealed in 45 antisense RNA control systems a 5' YUNR motif indicative for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 144 ( Pt 7)  شماره 

صفحات  -

تاریخ انتشار 1998